Month: April 2018

Binding Macs to AD using Munki’s Configuration Profile support

Although the trend is to move away from binding Macs to Active Directory (most commonly using NoMAD), we’re still binding for various reasons:

  • Being able to authenticate with domain credentials for doing things that require admin privileges.
  • Being able to connect remotely using domain credentials.
  • Computer labs and other multi-user Macs.
  • We’re still using AD mobile accounts, for now.

Originally, we would bind Macs to AD as part of our DeployStudio imaging workflow. Unfortunately, we faced a couple of drawbacks with this approach:

  • By installing/configuring something only when imaging, you’re not enforcing the setting – it’s a one-shot thing. In the future, the setting could change, or the application might require an update, but you’re not going to reimage your entire fleet every time that happens.
  • When we moved from DeployStudio to Imagr, we needed to trim our workflows to be as slim as possible.

With the help of Graham Gilbert’s tutorial, we were able to move AD binding to Munki. This also gave us an unexpected benefit: in the past, we frequently found that the binding on Macs would randomly break. This was a major issue in the classrooms, where students and faculty would not be able to login to computers and start class. Moving this to Munki with a custom installcheck_script made it “self-healing” – every 1-2 hours, Munki will rebind the Mac, if necessary (or prompt the user to do this through Managed Software Center).

For the past year, there’s been a big push to move to configuration profiles for applying settings. Luckily, you can use the “directory” payload to bind to AD! However, it’s just running dsconfigad in the background anyway, so it’s entirely possible for your Mac’s binding to be broken, but the AD profile to show as successfully installed. The MDM protocol currently has no method of determining if the AD profile should be reinstalled, so Munki is a much more logical choice for deploying this. Armin Briegel’s tutorial was instrumental in assisting with this transition.

Code and usage instructions are available in my GitHub repository.

Securing MunkiReport with Let’s Encrypt on Synology DSM

Continuing my series on using Docker with a Synology NAS, I now have MunkiReport v3 working – and you can, too!

Some background: MunkiReport is a companion project to Munki (which we set up with Squirrel last week). MunkiReport v3 was released recently, and has a huge list of improvements, thanks to a dedicated group of contributors – especially @bochoven and @mosen, who have overhauled large portions of the project. MunkiReport v3 has some new requirements that weren’t present with v2 – this is the perfect use case for Docker! Docker will handle all of this for us.

Briefly, here’s what we’re going to do: we’re going to set up MySQL, Adminer, and MunkiReport using Docker Compose. Then, we’re going to use DSM 6.x’s certificate and reverse proxy support to secure MunkiReport. Let’s go!

  1. Enable SSH to your Synology server. Open the Terminal and connect to your server (I’m using root, but your admin account should also do fine). Leave that open for later.
  2. Install Docker through Package Center, if you don’t already have it.
  3. Add a certificate to DSM. I like Let’s Encrypt – DSM can walk you through the certificate creation process, and will renew it automatically. You’ll need a domain name for this. You might be able to use Synology’s QuickConnect service for this. (I ended up setting up a CNAME for my QuickConnect address with a subdomain that I already own, then used the CNAME for the certificate)
  4. Create a shared folder for your Docker data. I named mine ‘docker’. Create two directories inside of it: ‘MunkiReport’ and ‘MySQL’.
  5. Create a file called ‘docker-compose.yml’ in your ‘docker’ shared folder. Populate it with this data, to start:
  1. Change line 41, your MySQL root password, to something random. You can also change the port numbers if you’d like, but I’m going to finish this tutorial with the assumption that you haven’t touched those (it can get confusing very quickly).
  2. Switch over to your Terminal window and run these two commands. The first will download the Docker images for Adminer, MunkiReport, and MySQL. The second command will create Docker containers, which contain your custom settings. If you change any of the settings in your docker-compose.yml file, re-running these commands will destroy the Docker containers and recreate them with your new specifications. Pretty cool. You can monitor all of this with the Docker application in DSM.
    /usr/local/bin/docker-compose  -f /volume1/docker/docker-compose.yml pull
    /usr/local/bin/docker-compose -f /volume1/docker/docker-compose.yml up -d
  3. Now, let’s create the MySQL database for MunkiReport. Go to your Synology server’s IP address, but add :3307 to the end. You’ll reach a login page. Here are the relevant details:
    1. Server is your NAS’s IP address, but with :3306 at the end.
    2. Username is root.
    3. Password is whatever you set in Step 6.
    4. Database can be left blank.
  4. After you login, click ‘Create database’. Name the database whatever you’d like – I went with ‘mreport’. For ‘Collation’, pick ‘utf8_general_ci’. Close the Adminer tab.
  5. Open a new tab, with your server’s IP address followed by :4443 at the end.  You should be greeted with an empty MunkiReport installation. Nice!
  6. In your ‘docker’ shared folder, you had created a ‘MunkiReport’ folder in Step 4. Inside of that, create a file named ‘config.php’. This is how we’ll configure MunkiReport – by overriding values specified in config_default.php (click to see MunkiReport’s default values). I’ll skip this part of the tutorial, as it’s documented much better on MunkiReport’s wiki. At a minimum, I’d strongly suggest setting up authentication, MySQL connection settings, and the modules you’d like to enable.
  7. Before you can expose your MunkiReport container to the outside world, you’ll want to secure it. You’ll do this with a reverse proxy – basically, another web server put in front of your MunkiReport container (which itself contains a web server). The reverse proxy will add encryption, but otherwise leave your MunkiReport installation alone. DSM 6.0 includes a reverse proxy, so let’s use that.
  8. Check out the bottom of this Synology knowledge base article. Unfortunately, the documentation leaves a lot to be desired, so I’ll suggest some settings:
    1. Description: MunkiReport
    2. Source Protocol: HTTPS
    3. Source Hostname: *
    4. Source Port: 4444
    5. (leave both the HSTS and HTTP/2 boxes unchecked)
    6. Destination Protocol: HTTP
    7. Destination Hostname: 127.0.0.1
    8. Destination Port: 4443
  9. Click OK to save.
  10. In your router, forward port 4444 (TCP) to your Synology server. If you haven’t given your Synology server a static IP address, that’d be a good idea.
  11. Visit your secure MunkiReport installation in a web browser:
    https://yourdomain.com:4444

From there, you can create a MunkiReport installation package (I like using the AutoPkg recipe for this). Push it to your clients, then watch as they check in with sweet, sweet data.

Securing Squirrel with Let’s Encrypt on Synology DSM

Yep, this is another Docker blog post…but this time, we’re covering Munki!

It’s pretty common knowledge that a Munki server is just a web server. This allows tons of flexibility with hosting your Munki repository – basically anything that can run Apache, NGINX, IIS, etc. can act as your Munki server (even macOS Server, but I wouldn’t recommend it). Today, I’m going to continue the series of blog posts about Docker, but we’re going to discuss something called Squirrel.

Squirrel, written by Victor Vrantchan (@groob), is described as a simple HTTPS server for Munki. While you can set up your own Apache server (or Docker container), Squirrel comes prebuilt for hosting a Munki server.

As with Ubooquity, I’m going to use Synology DSM’s certificates.  That way, we can leverage Let’s Encrypt without needing to do any additional setup.

  1. First, set up Let’s Encrypt with in DSM’s Control Panel. Synology has excellent documentation on that.
  2. Before we go any further, I’d recommend creating a directory for Squirrel to save files (such as certificates). Separately, you’ll also want to create a Munki repository (see the Demonstration Setup, but skip the Apache config stuff). If you already have a repo, that’s great too.
  3. Next, add the Docker image for micromdm/squirrel. Follow Synology’s instructions.
  4. Create a Docker container, following those same instructions.
    1. You’ll want to specify two volumes, both of which you created in Step 2: where to store Squirrel’s data, and your Munki repository. I have a shared folder named ‘docker’, and I like creating directories for each service within that: for example, /volume1/docker/Squirrel. I made a ‘certs’ directory within that, as well.
    2. You’ll also want to pick a port. If you’re comfortable exposing port 443 to the world, go for it. Otherwise, use 443 internally to the Docker container, and pick another port for the outside world. Be sure to forward this port on your router!
    3. The environmental variables you’ll want to override are:SQUIRREL_MUNKI_REPO_PATH (this is the path to your Munki repo, which you specified in Step 4a).
      SQUIRREL_BASIC_AUTH (this is a randomly generated password for your Munki repo)
      SQUIRREL_TLS_CERT (/path/to/cert.pem)
      SQUIRREL_TLS_KEY (/path/to/privkey.pem)
  5. But wait, where do we get the cert? I wrote a really simple script to copy the Let’s Encrypt certs to Squirrel’s config location: get it here. Be sure to edit line 6! I run this once a night, with DSM’s Task Scheduler.
  6. After you start up your Squirrel container, check the Docker logs by selecting your container, clicking the Details button, then the Log tab. You’ll see the Basic Authentication string that you’ll need to provide to your Munki clients. You can find out more information on the Munki wiki.

After that, you’re done! Your clients have a secure Munki repo, and you don’t have to bother with Apache config files, a reverse proxy for securing your web server, or any of that.

Powered by WordPress & Theme by Anders Norén